

PhD offer

At IETR (Institut d'Electronique et des Technologies du numéRique) UMR CNRS 6164 and Institut Foton UMR CNRS 6082, France

PHOTOMIXING ANTENNA ARRAYS FOR TERAHERTZ WIRELESS COMMUNICATIONS

Project context

Wireless data traffic increases by a factor of 100 every 10 years and, in 10 years' time, we will have to provide data rates of even Tb/s. Given Shannon's limit, a more efficient use of available spectrum will not suffice to reach the predicted data rates. The use of *carrier frequencies in the sub-Terahertz* (sub-THz) regime (between 100 GHz and 1 THz) *will be pivotal* to achieve the total bandwidths (BWs) required for front- and back-hauling *in beyond 5G systems*, ultra-high definition multimedia streaming and data centers. Moreover, sub-THz frequencies have not yet been allocated and they present atmospheric transmission windows with attenuation below 10 dB/km. To enable the use of this frequency band, we will need adequate front-ends with high gain and beam steering capabilities to receive/transmit efficiently in point-to-point and point-to-multipoint scenarios.

The first challenge in sub-THz wireless communications consists in *designing high-gain antennas* efficiently coupled to continuous-wave THz sources at room temperature, to compensate for the propagation losses. The second hurdle lies in the lack of *sources with adequate output power* in the sub-THz range. Finally, one must to provide *beam steering capabilities* to guarantee an excellent alignment of the required narrow beams.

Objectives of the PhD offer

The overall objective of this thesis will be to develop sub-THz front-ends by photonic generation with several disruptive proofs of concepts at international level:

- One of the first *high-gain photomixing antenna array* with broad bandwidth. We will investigate the integration of UTC-photodiodes with planar wideband antennas. Special attention will be paid to *find the most appropriate materials and fabrication techniques* for these arrays.
- The developed photomixing arrays will also provide *beam steering capabilities*. By bringing one fiber to each photodetector, it is possible to control the phase of each element with true time delay and provide either beam steering or multiple beams.
- Implement currently developed dual frequency optical sources to achieve the sub-THz carrier compatible with photo-mixer arrays.
- Last but not least, the realized *prototypes will be measured* at IETR/Institut Foton facilities, and real-time high data rates over medium or long distances in *point-to-multipoint scenarios*.

Candidate

Required education level: Master or equivalent degree in electrical engineering, photonics or physics. *Duration*: 36 months.

Required background: antenna theory, microwave engineering, microwave photonics, Terahertz radiation. Knowledge of French is not required.

Deadline to apply: as soon as possible (no later than May 2022).

Contact persons

To apply please send your motivation letter, CV, and recommendation letters (optional) to:

Prof. Mehdi ALOUINI

Email: mehdi.alouini@univ-rennes1.fr Institut Foton, Université de Rennes 1, France. *Dr. David GONZÁLEZ OVEJERO* Email: david.gonzalez-ovejero@univ-rennes1.fr IETR, CNRS, France.

Prof. Ronan SAULEAUDr. Cyril ParanthoenEmail: ronan.sauleau@univ-rennes1.frEmail: Cyril.Paranthoen@insa-rennes.frIETR, Université de Rennes 1, France.Institut Foton, INSA Rennes, France

<u>All the candidatures are evaluated. However, due to the large number of applications typically received, only the short-listed candidates will be contacted.</u>